
An Industrial Case Study of the ARM926EJ-S Power Modeling

Hyunsuk Kim1, Seokhoon Kim1, Ikhwan Lee1, Sungjoo Yoo1, Eui-Young Chung2,
Kyu-Myung Choi1, Jeong-Taek Kong1, Soo-Kwan Eo1

1CAE center, System LSI division, Semiconductor Business, Samsung Electronics, Co. Ltd.
San #24 Nongseo-Ri, Giheung-Eup, Youngin-City, Gyeonggi-Do, Korea, 449-711

2School of Electrical and Electronic Engineering, Yonsei University
134 Sinchon-dong, Seodaemun-gu, Seoul, Korea, 120-749

Abstract – In this work, our goal is to develop a fast and
accurate power model of the ARM926EJ-S processor in
the industrial design environment. Compared with
existing work on processor power modeling which focuses
on the power states of processor core, our model mostly
focuses on the cache power model. It gives more than
93% accuracy and 1600 times speedup compared with
post-layout gate-level power estimation. We also address
two practical issues in applying the processor power
model to the real design environment. One is to
incorporate the power model into an existing commercial
instruction set simulator. The other is the re-
characterization of power model parameters to cope with
different gate-level netlists of the processor obtained from
different design teams and different fabrication
technology.

Keywords: power estimation, processor, ARM926EJ-S,
cache, sequential / non-sequential access, fill buffer,
instruction set simulator, re-characterization

1 Introduction
Embedded software design is getting more and more
attention as software (SW) complexity increases faster
than hardware (HW) complexity [1]; thus, SW cost starts
to dominate total chip design cost [2]. SW dominates
power consumption as well as system performance. In
particular, handheld mobile devices (e.g., cell phone, PDA,
PMP, and MP3 player) require SW running on the devices
to consume minimum power.
Low power SW design technology covers a wide range of
research area, e.g., instruction scheduling [10], dynamic
voltage scaling [11], and code transformation to reduce
off-chip memory accesses [12]. In reality, SW designers
often apply manual code optimization for both
performance and power. Thus, the design space of low
power SW is huge in terms of design technology and ad-
hoc manual optimization.
It is crucial to allow SW designers to explore the huge SW
design space to achieve low power design. To do that, we
need accurate and fast methods of estimating the power
consumption of SW running on the target processor.
In this work, our goal is to develop a fast, but accurate
power model of the ARM926EJ-S processor in the
industrial design environment. The industrial design

environment is different from the academic arena in two
aspects. First, designers often resort to commercial
simulators and tools. Thus, the power model needs to be
incorporated into their existing simulators or tools. Second,
there is a need to re-characterize the power model
parameters to deal with different gate-level netlists of the
processor obtained from different design teams and
different fabrication technology 1 . In order to apply the
power model to a real design environment, we need to
resolve these two issues.
Compared with existing work on processor power
modeling which focuses on the power states of processor
core, our model mostly focuses on the cache power model.
It is because cache activities dominate the variation of
processor power consumption and our initial goal of power
estimation accuracy (90% in average power) justified a
simple power model of the processor core.
Experiments show that the presented power model gives
more than 93% accuracy and 1600 times speedup
compared with power simulation in post-layout gate-level.
The paper is organized as follows. Section 2 summarizes
related work. Section 3 explains the presented power
model of the ARM926EJ-S. Section 4 addresses the issue
of integrating the power model into a commercial
instruction set simulator. Section 5 presents an
environment to allow for the re-characterization of the
power model parameters. Section 6 gives experimental
results. Section 7 concludes the paper.

2 Related Work
Numerous studies have proposed various processor power
modeling techniques. The first work on processor power
modeling was reported in [6]. Their model quantified
instruction base energy and various inter-instruction energy
effects to enable fast software energy estimation. Wattch [4]
and SimplePower [5] are two well-known power estimation
tools in academia.
A power model tailored for the Intel XScale processor was
proposed in [7]. Their power model is based on module

1 For instance, 130nm technology may have different
versions such as high speed, generic, low power and
different libraries such as normal CMOS, MTCMOS, etc.
Migration from 130nm to 90nm or 65nm adds another
dimension of different types of netlists.

120

activities, where each module has its power equation
embedded in Sim-XScale simulator. The power equations
were constructed using transistor level schematics of
functional units and a high-level view of transistor gate and
drain capacitances.
A software power estimation tool, JouleTrack, was
presented in [9]. They proposed power characterization
methodology that avoids explicit power characterization for
each differentiated instruction class.
A power model for the Philips PR1900 processor was
proposed in [8]. Their elaborate power model is instruction-
based similar to [6] and the base power values was obtained
using their in-house gate-level power estimation tool.
Compared with the aforementioned studies, our work is
unique in that we resolve practical issues encountered in
applying power modeling to the ARM926EJ-S processor in
the industrial design environment. More specifically, we
resolve unique issues such as memory compiler usage (in
Section 3), cache-oriented power modeling (in Section 3),
integration of the power model into a commercial
instruction set simulator (in Section 4), and re-
characterization of the power model parameters (in Section
5).

3 ARM926EJ-S Processor Power
Model Development

High-level power modeling involves three major steps:
Defining power states, characterizing power values per
state, and annotating the simulator with the power values.
In our work, our goal is to achieve at least 90% of power
estimation accuracy compared with gate-level power
estimation using the post-layout netlist.

3.1 ARM926EJ-S architecture

Figure 1 ARM926EJ-S architecture.

The ARM926EJ-S processor has a five stage pipelined
datapath and a Harvard cache architecture as shown in
Figure 1. The caches are four-way set associative, with a
cache line length of eight words per line. The size of the
caches can be from 4KB to 128KB. The ARM926EJ-S
processor also has a fill buffer (FB) that keeps the most

recently fetched cache line.

Sequential / non-sequential cache accesses
In the ARM926EJ-S processor, any instruction that
modifies the program counter (such as a branch, or ‘MOV
pc, r0’) causes a non-sequential instruction accesses on the
next cycle. An instruction access by ‘PC increment by 4’
that crosses the cache line boundary also causes a non-
sequential access. In Figure 2 (a), a non-sequential (NS)
access causes all four cache tag memories and data
memories to be accessed along with the fill buffer.
Whereas a sequential access (SEQ) causes only the data
memory where the data is located is accessed as in Figure
2 (b). In Figure 2 (c), if the data is accessed from the fill
buffer, there in no access to the cache.
For data caches, load multiple (LDM) and store multiple
(STM) instructions support sequential accesses. LDR and
STR instructions incur non-sequential accesses.

3.2 ARM926EJ-S power states

The ARM926EJ-S processor is mainly composed of the
processor core (mostly consisting of logic) and memory
cells (i.e. instruction and data caches, fill buffers, MMU,
etc.) as shown in Figure 1. We separate the processor
power model into two parts: Processor core model and
cache model. This separation comes from two observations.
One is that caches can be configured differently (in terms
of size, associativity, etc.) for various applications. Thus,
one single model will not give an accurate estimation. The
other observation is that the power consumption of caches
gives a large variation. In the ARM926EJ-S processor, the
cache power consumption ranges from 3% up to 60% of
total power. Therefore, we decide to model the core logic
block and cache memory separately.

3.2.1 Processor core: Two simple power states
We observe that the core logic can be in one of the two
states: Busy state and idle state (stalled by interlocks).
There are numerous studies on processor power modeling,
where more complex instruction level power states are
identified [6,7,8]. However, in our work, we find that the
two-state core power model gives more than 95% of the
core power estimation accuracy for all of our benchmarks.
On the other hand, one state model performs very poorly
with its accuracy level of less than 70% for some
benchmarks. Thus, we adopt the two-state power model
for the processor core.

3.2.2 Activity-based coarse-grain cache power
model

Most of the previous work on cache power modeling has
exploited circuit-level information such as bit line and
word line capacitive loads to generate flexible cache power
models [4, 5, 7]. In industry, cache memories use memory
compiler-generated SRAMs, where power values for each
module are also provided for each type of read and write

��������� 	 ����
 	 � ������������ � � �
���� � ��� ���

� ��� ��� ���
 ! " "$#�%& '�(

��� �*)$+$,.-$/ ('

� 0 -1-�2 '

3 1&4 1
 ! " "$#�%& '�(

	 0 -1-�2 '

3 1&4 14 1$54 1$5

121

access. Thus, our cache power is modeled as a sum of
power values for all accessed SRAM modules. For SRAM
modules not accessed during the cycle, their static power
values are added.

Figure 2 ARM926EJ-S cache activity patterns.

Power modeling for sequential/non-sequential accesses
The ARM926EJ-S cache access behavior can be
categorized into three different types as shown in Figure 2.
In power perspective, a non-sequential access consumes
more than four times of power than a sequential access,
since the cache power is the sum of dynamic power of all
activated modules (tag memories and data memories) and
static power of inactive modules. In Figure 3, the CSN
(Chip Select Negative) signals for four cache ways are
shown with the total power consumption graph measured
using our in-house gate-level power simulator for the short
code segment at top of the figure. When the four CSN
signals are active (four ways are accessed altogether), the
access is non-sequential, whereas if only one of the four
ways is accessed, the access is sequential. The figure
dictates that in the ARM926EJ-S caches, non-sequential
accesses and sequential accesses should be differentiated
for accurate power estimation.

687�9�: ; <>=�? ; @BAC=�? ; D�D>EF : G*7�9 H�ICG�9 D�; E8<>; DBA�J

KMLNKPO QSRPT$U
VWXYZ
[\]^

_a`

bcde
fgh ijk l
cmjd

n o p qCrn o p q�sn o p qCtn o p qCu

v�wBw*xzyB{�{ 9 =�| 9 v�| }�Av�{�=�x�~��>� 9 =�|���9 ��| 9 v�| �C~���}����v�{�v>x.yB{B{ 9 v�| 9 v�| }�Av�{���x�w�����9 v�| }*=N�&�v�{�w*x������ =N�Nv��$�v���=�x��S����9 v�| }*=v��v>x�� =N�&�=$=
��7��$���N���>�&���&� ; � &��$���$�N� ~��$�>�&���&� ; �� N��$���$�N�

687�9�: ; <>=�? ; @BAC=�? ; D�D>EF : G*7�9 H�ICG�9 D�; E8<>; DBA�J

KMLNKPO QSRPT$U
VWXYZ
[\]^

_a`

bcde
fgh ijk l
cmjd

n o p qCrn o p q�sn o p qCtn o p qCu

KMLNKPO QSRPT$U
VWXYZ
[\]^

_a`

bcde
fgh ijk l
cmjd

n o p qCrn o p q�sn o p qCtn o p qCu

v�wBw*xzyB{�{ 9 =�| 9 v�| }�Av�{�=�x�~��>� 9 =�|���9 ��| 9 v�| �C~���}����v�{�v>x.yB{B{ 9 v�| 9 v�| }�Av�{���x�w�����9 v�| }*=N�&�v�{�w*x������ =N�Nv��$�v���=�x��S����9 v�| }*=v��v>x�� =N�&�=$=
��7��$���N���>�&���&� ; � &��$���$�N� ~��$�>�&���&� ; �� N��$���$�N�

Figure 3 Comparison of power consumption between
sequential and non-sequential accesses.

Table 1 lists our identified data cache states and their
corresponding module activities and power equations. In
the table, Tr (Tw) and Dr (Dw) represent module power
numbers for Tag read (Tag write) and Data read (Data
write), respectively, obtained from our in-house memory
compiler. The states are identical for the instruction cache
except that there is no cache write hit or miss states. In this
work, we ignore the power consumed by fill buffers.

Power modeling for fill buffer accesses
Instructions and data are accessed from the fill buffer until
it is evicted to the cache in two cycles (as shown 1st write-
back and 2nd write-back in Table 1) by the following cache
line fetched in from the bus. Instruction fill buffer (I-FB)
hit counts accounts for approximately 10% of the
instruction cache hit counts in our dhrystone benchmark. If
an instruction fill buffer hit is encountered and the PC
increments by 4, then it is I-FB sequential read, where
negligible amount of power is consumed by the fill buffer.
Therefore, it should be distinguished if the data is read
from the cache or fill buffer to estimate power accurately.

Power modeling for data write accesses
Data cache write event takes at least three cycles. Four tags
are first matched to find if it is a hit or a miss. If it is a hit,
the data is written via a write buffer. We did not consider
the power consumption of the write buffer since it is
considered to be negligible. If the access is a miss, it is
written externally.

Table 1 Activity-based cache power model.

Cache states Module activity Power
Equation

sequential (cache) read 1 data read Dr
non-sequential (cache)
read / read miss

4 tag reads and
4 data reads

Tr*4 +
Dr*4

Data cache write hit 4 tag reads, 1
tag write and 1
data write

Tr*4
+Tw+Dw

Data cache write miss 4 tag reads Tr*4
FB -> cache write (1st
write-back)

1 tag write and 4
data writes

Tw+Dw*4

FB -> cache write (2nd
write-back)

4 data writes Dw*4

sequential FB read - -

4 Inferring Cache Power States
The module activity information shown in Table 1 is not
available in our instruction set simulator. The simulator
reports only cache miss, cache hit, and fill buffer hit events
without the information on sequential and non-sequential
accesses. To obtain the activity information, distinctive
cache power states need to be inferred from the available
state information of the simulator at run-time.

¡ (' 1 3£¢ ! ¤N¤¡ (' 1 3 2 ! 4�¥�¦
4 1$5 3 1&4 1

4 1$5 3 1&4 1

4 1$5 3 1&4 1

¡ (' 1 3 2 ! 4�¦ ��§

� �¨2 ! 4�¦ ��§

 ! " "�#�%& '�(

 ! " "$#�%& '�(

 ! " "$#�%& '�(
©�ªB«

©�¬B«

©M�«

122

® ¯±° ²&³�´.µ�¶ · ® ¸�¹º±» ¶ ¼ ¼ ²�´

½�²&¾�¿�° ²�³&´

À>Á�Â&¸�ÃC²�¾�¿�° ²�³&´

ÄÅÆ¶ Â&Ç$° ¿ÈÉ�¶ Â³ËÊ�¼ ÁÇ$Ì À>Á�Â&¸�ÃC²�¾�¿�° ²&³�´

½�Í

ÎMÏ ÐNÑ±° ¶ · ²�Ê$³�Ç�Ì�· Á�® ¯
ÒNÏ ÐCÑ±° ¶ · ²$Ê$³&Ç$Ì�· Á�® ¯

Ó

Ó

Ó

® ¸�¹º�µ�¶ ·

ÄÅÆ¶ Â&Ç$° ¿È�É¶ ÂÔ³ËÊ¼ ÁÇ�Ì À>Á�Â&¸�ÃP²�¾�¿�° ²�³&´

® ¸�¹º�° ²&³&´

Ó

Ó

® ¯±° ²&³�´.µ�¶ ·® ¯±° ²&³�´.µ�¶ · ® ¸�¹º±» ¶ ¼ ¼ ²�´® ¸�¹º±» ¶ ¼ ¼ ²�´

½�²&¾�¿�° ²�³&´½�²&¾�¿�° ²�³&´

À>Á�Â&¸�ÃC²�¾�¿�° ²�³&´À>Á�Â&¸�ÃC²�¾�¿�° ²�³&´

ÄÅÆ¶ Â&Ç$° ¿ÈÉ�¶ Â³ËÊ�¼ ÁÇ$ÌÄÅÆ¶ Â&Ç$° ¿ÈÉ�¶ Â³ËÊ�¼ ÁÇ$Ì À>Á�Â&¸�ÃC²�¾�¿�° ²&³�´À>Á�Â&¸�ÃC²�¾�¿�° ²&³�´

½�Í½�Í

ÎMÏ ÐNÑ±° ¶ · ²�Ê$³�Ç�Ì�· Á�® ¯ÎMÏ ÐNÑ±° ¶ · ²�Ê$³�Ç�Ì�· Á�® ¯
ÒNÏ ÐCÑ±° ¶ · ²$Ê$³&Ç$Ì�· Á�® ¯ÒNÏ ÐCÑ±° ¶ · ²$Ê$³&Ç$Ì�· Á�® ¯

Ó

Ó

Ó

® ¸�¹º�µ�¶ ·

ÄÅÆ¶ Â&Ç$° ¿È�É¶ ÂÔ³ËÊ¼ ÁÇ�Ì À>Á�Â&¸�ÃP²�¾�¿�° ²�³&´

® ¸�¹º�° ²&³&´

Ó

Ó

® ¸�¹º�µ�¶ ·® ¸�¹º�µ�¶ ·

ÄÅÆ¶ Â&Ç$° ¿È�É¶ ÂÔ³ËÊ¼ ÁÇ�ÌÄÅÆ¶ Â&Ç$° ¿È�É¶ ÂÔ³ËÊ¼ ÁÇ�Ì À>Á�Â&¸�ÃP²�¾�¿�° ²�³&´À>Á�Â&¸�ÃP²�¾�¿�° ²�³&´

® ¸�¹º�° ²&³&´® ¸�¹º�° ²&³&´

Ó

Ó

Figure 4 Inference flow diagram of sequential / non-
sequential / FB accesses for the instruction cache.

To infer the required cache activity information, we
implement the steps in the flow diagram depicted in Figure
4 in the instruction set simulator for instruction accesses (a
similar flow diagram for data caches is employed in our
work). While observing the PC update history, we use the
statistics such as cache hit or miss, and fill buffer hit or
miss, provided by the instruction set simulator to infer the
instruction cache power state. For instance, if a cache read
hit is reported while the PC is incremented by 4 inside a
cache line, it is in sequential read state. A fill buffer hit
event reported by the simulator can be in one of the two
power states as shown in Figure 2 (a) (fill buffer access in
non-sequential access) and Figure 2 (c) (fill buffer access
in sequential access). Similar to the cache hit event, if the
fill buffer hit event is reported while the PC is incremented
by 4 inside a cache line, it is in sequential fill buffer read
state.

5 Power Re-characterization Flow
Power consumption is a complex function of many
parameters. Depending on the quality of implementation,
the same RTL can result in very different power values in
the gate-level netlist. For example, two of our sample
designs of the ARM926EJ-S show as much as twice power
difference at the same frequency level, even though they
are implemented with the same technology library. This
implies that ‘characterize once’ approach might not hold
true in real applications.
In general, power characterization in gate level proceeds as
follows: (1) Obtain the signal toggle information from gate
level simulation, (2) estimate the gate-level power from the
toggle information using power libraries, and (3) calculate
per-state power values using the estimated power
information. If the power characterization is performed

manually for each different gate-level netlist, it will be
long, tedious, and error-prone task.
To reduce the characterization efforts, we set up an
automated characterization flow as shown in Figure 5,
where designers can characterize power values repeatedly
without investing much effort. The characterized power
values are simply read by our simulator annotated with the
power model explained in Section 4 to produce software
power profiles. Note that the power model itself does not
need any modification. We find that the power model itself
is valid for different implementations of the same RTL.
Figure 5 shows our power characterization flow. We first
build a gate-level and RTL co-simulation template, where
an RTL testbench with a simple bus and memory module
drives the simulation with the ARM926EJ-S gate level
netlist of interest to generate the cycle-by-cycle signal
toggle information as well as signal traces to infer the
power states, using dhrystone benchmark. The toggle
information is then fed into our in-house gate level power
estimation tool to generate cycle-by-cycle power values.
The per-state power value is obtained by averaging the
estimated cycle-by-cycle power values. All the
aforementioned steps are performed automatically without
any user intervention. The obtained per-state power value
is finally annotated into our power simulator. We use the
characterization flow to obtain the core power states in our
power model. Note that the cache power model is activity-
based and its SRAM module power value is provided by
our memory compiler as explained in Section 3.

ARM926
16/16kB

Post-layout
gate-level netlist
(Lib_tech)

100MHz

void ARM926_ISS() {
while(1) { // clock++
…

…
}

ViP Model

AHB Memory

RTL Testbench

Power State
Monitor

Gate level – RTL Co-simulation Model Template clk

power
state

s1 s2 s2 s2 s1 s1 s3 s4

Simulation
run

Signal toggle info

power
cons. 0.15 0.12 0.10 0.11 0.13 0.10 0.28 0.21

S1: 0.13 S2: 0.11 S3: 0.25 S4: 0.21

Per-state
average

clk

CubicPower
run

Power info
annotationPower += S1_power;

State S1 = <idle, I$ first open, D$ no access>

ARM926
16/16kB

Post-layout
gate-level netlist
(Lib_tech)

100MHz ARM926
16/16kB

Post-layout
gate-level netlist
(Lib_tech)

100MHz

void ARM926_ISS() {
while(1) { // clock++
…

…
}

ViP Model

AHB Memory

RTL Testbench

Power State
Monitor

Gate level – RTL Co-simulation Model Template clk

power
state

s1 s2 s2 s2 s1 s1 s3 s4

Simulation
run

Signal toggle info

clk

power
state

s1 s2 s2 s2 s1 s1 s3 s4

Simulation
run

clk

power
state

s1 s2 s2 s2 s1 s1 s3 s4

Simulation
run

Signal toggle info

power
cons. 0.15 0.12 0.10 0.11 0.13 0.10 0.28 0.21

S1: 0.13 S2: 0.11 S3: 0.25 S4: 0.21

Per-state
average

clk

CubicPower
run

Power info
annotationPower += S1_power;

power
cons. 0.15 0.12 0.10 0.11 0.13 0.10 0.28 0.21

S1: 0.13 S2: 0.11 S3: 0.25 S4: 0.21

Per-state
average

clk

CubicPower
run

Power info
annotation

power
cons. 0.15 0.12 0.10 0.11 0.13 0.10 0.28 0.21

S1: 0.13 S2: 0.11 S3: 0.25 S4: 0.21

Per-state
average

clk

CubicPower
run

Power info
annotationPower += S1_power;

State S1 = <idle, I$ first open, D$ no access>State S1 = <idle, I$ first open, D$ no access>

Figure 5 Our power characterization flow.

6 Experiments
Table 2 lists the characteristics of five benchmarks used in
our experiments. The Figure 6 shows 93%~98% of
average power estimation accuracy for the five
benchmarks. Figure 7 shows cycle-by-cycle estimation
result for a short code segment. It can be seen that the
estimated power values closely track the power values
measured in gate level. The cycle-by-cycle error is 17% on
average. Regarding the power estimation speed of our
simulator, it performs approximately 1600 times faster

123

than gate-level estimation.

Table 2 Benchmarks.

Benchmark Code Size Simulation
Cycle Counts

dhrystone 49KB 12068
cavity_detection 39KB 106138
adpcm encoder 36KB 101358
fft 96KB 321537
h264 enc (me intpel only) 714KB 1896639

Õ�ÖC×PØ ÕPÙ�×�Ú�ÛCÜ�×PØ&×�ÝaÞ ß à>Õ�Þ ß Û&á*ÕPâ�âPãPØ ÕPâMä

å&æå$ç
å&èå&é
åNêå�ë
å&ìå�í
å&îå&å

ï ð$ñ òNó ô8õMö�÷ ø�ùûú�ü ï ÷ ô ÷
ø ô ù ïþý øaÿ � ���

ð������ ÷ ö
ø

	�
����������� �

���
����
�� �
�

Figure 6 Average power estimation accuracy.

����� �!�" � #%$ '& � �() ��� (� #

* + *-, �/.�0�&

123
4567 8
9: ;
2
<93

��� � -! " ��#
� �() ����(� #

Figure 7 Cycle-by-cycle estimation accuracy.

7 Conclusions
In this paper, we proposed a fast and accurate power
model for the ARM926EJ-S processor. The processor core
is modeled in two power states, namely, busy state and idle
state. The cache model is a coarse-grained activity model.
We model power distinctive cache states based on its
access behavior. Each power state is inferred by the
instruction simulator at run-time using the cache events
provided by the simulator.
We also presented the power characterization flow with
which each design team can adapt the model to its own
implementation of the processor without much effort.
Our experiments report more than 93% of average power
estimation accuracy and closely track the cycle-by-cycle
power trend.

Our future work includes applying the technique presented
in this paper to other processors such as DSPs and the
ARM1176 processor.

Acknowledgments
We thank Dr. Joonhwan Yi from TN Business, Samsung
Electronics, and Tom Miller from Sequence for their
interests and helpful comments during the course of this
project.

References
[1] MEDEA+ EDA Roamap, 2003.
http://www.medeaplus.org.

[2] International Technology Roadmap for
Semiconductor (ITRS),
http://public.itrs.net/Files/2003ITRS/Home2003.htm.

[3] ISO/IEC 14496-10 and ITU-T Rec. H.264,
Advanced Video Coding, 2003.

[4] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a
framework for architectural-level power analysis and
optimizations,” in ISCA’00, pages 83-94, 2000.

[5] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J.
Irwin, “The design and use of simplepower: a cycle-
accurate energy estimation tool,” in DAC’00, pages 340 –
345, 2000.

[6] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis
of embedded software:a first step towards software power
minimization,” IEEE Trans. on VLSI systems, pages 437-
445, December 1994.

[7] G. Gontreras, M. Martonosi, J. Peng, R. Ju, and G.-Y.
Lueh, “XTREM: a power simulator for the Intel XScale®
core,” in LCTES’04, pages: 115 – 125, 2004.

[8] A. Sama, M. Balakrishnan, and J. F. M. Theeuwen,
“Speeding up Power Estimation of Embedded Software.”
in ISLPED’00, pages 191-196, 2000.

[9] A. Sinha, and A. Chandrakasan, “JouleTrack: a web
based tool for software energy profiling,” in DAC’01,
pages: 220 - 225 , 2001.

[10] M. Lee, et al., “Power Analysis and Low-Power
Scheduling Techniques for Embedded DSP Software,” In
Proc. ISSS, 1995.

[11] J. Seo, et al., “Profile-based Optimal Intra-task
Voltage Scheduling for Hard Real-Time Applications,” in
Proc. DAC, 2005.

[12] DTSE Methodology,
http://www.imec.be/design/dtse/methodology.shtml.

124

	Main
	Program
	Table of contents
	Tutorial
	Efficient Formal Verification of Pipelined Microprocessors
	HW-SW Co-Simulation and Co-Emulation for SoC Design and Verification
	What are the challenges (of system design) that need to be overcome and what are the tools that we need?
	Silicon RF Integrated Circuit Design Technique

	Invited Talk
	Security Technologies for SoC
	SOC Design Foundry and a Case of Complex Multimedia SOC
	Floorplan Design for Complex VLSI Systems
	A RTL to GDS2 standard design methodology for system LSI in 90nm and below Invited

	Keynote Speech
	Creating Unique Values in SOC Competition
	IC Design Challenges in an SoC ERA
	Challenges and Innovations for Development of SOCs

	Session
	Session 1
	System Level Architecture Evaluation and Optimization: an Industrial Case Study with AMBA3 AXI
	I/O Modeling and Refinement for HW/SW Codesign of Embedded Systems
	Multimedia IP Design in SystemC Design Environment Adopting High-level Code Optimization

	Session 2
	Design of AMBA-compatible SNA switch wrapper using extended SNP
	Design of a High-Performance Scalable CDMA Router for On-Chip Switched Networks

	Session 3
	A Schedulable DMA Scheme for Real Time Systems
	ASIP Instructions and Their Hardware Architecture for H.264/AVC
	High-level System Modeling and Functional Verification of a 3D-SoftChip Adaptive Computing System using SystemC
	An Efficient Processor Architecture for Digital Signal Processing using Registered Logic
	A Nested Loop-Level Parallelism for DSP in Reconfigurable Computing using Forward Scheduling

	Session 4
	A Terrestrial DMB System on a Chip
	Analysis and Architecture Design for Multi-Symbol Arithmetic Encoder in H.264/AVC
	A Memory-Efficient Interpolation Method of H.264 Motion Compensation on SIMD Architecture
	Reconfigurable Architecture Design for H.264 Motion Estimation and 3D Graphics Rendering
	Applying Folding & Register Minimization Transformation on DFG and Generating Verilog HDL Code

	Session 5
	A Sub-1V Power Supply Sub-bandgap with an Extended Voltage and Temperature Range
	A Current-Mode CMOS Image Sensor Based on Smooth Spatial Filter
	Design of an 1.8V 8bit 500MSPS CMOS Digital to Analog Converter for UWB
	A Programmable Gain Amplifier for a Wireless LAN Direct-Conversion Receiver
	Design of a fast DC-DC Boost converter

	Session 6
	ADAPTIVE DISPLAY QUALITY CONTROL SYSTEM BY COLOR GAMUT EXTENSION ALGORITHM WITH SKIN COLOR PROTECTION
	A System-on-a-Chip Design for Digital TV
	ANALYSIS AND ARCHITECTURE DESIGN FOR MULTI-TRANSFORM FOR H.264/AVC HIGH PROFILE

	Session 7
	Full-Chip-Level Considerations for Fine-Grained Power-Gating Scheme to Reduce Two Orders of Magnitude Lower Leakage Current
	Analysis on MTCMOS Circuit based on Lumped RC Model for Virtual Ground Line
	An Industrial Case Study of the ARM926EJ-S Power Modeling
	A New Register Design for Low Power TLB and Cache
	A Low-Power MAC Unit

	Session 8
	A New ADL-based compiler for Embedded Processor Design
	Design and Implementation of a Kernel Resource Protector for Robustness of Linux Kernel Loadable Modules
	Light-weight Checkpointing Facility for Embedded Systems
	Embedded Real-Time Software Architecture for Unmanned Autonomous Helicopters
	Design and Implementation of a Linux-based Smartphone

	Session 9
	Reducing Lock-Step Overhead of Hardware-Assisted Simulation Acceleration using Protocol Awareness
	Layout-aware Low Power Test Pattern Generation
	Built-In Self-Test of Configurable Cores in SoCs Using Embedded Processor Dynamic Reconfiguration
	A New Hardware Efficient Interconnect BIST
	Efficient Test Data Compression Using Transition Directed Run-length Code in System-on-a-chip

	Session 11
	Asynchronous FIFO Interfaces for GALS On-Chip Switched Networks
	An Efficient Substrate Noise Analysis Method for Full Custom IC Design using Lightly Doped CMOS Process
	Power Grid Metal Fix and Planning for SOC Family
	Hierarchical Analysis of RLC Power Distribution Network

	Session 12
	RF Amplitude Control in an All-Digital PLL based Transmitter
	A CMOS Quadrature Down-Converter for Direct-Conversion Receiver of 5.15-5.825GHz Wireless LAN
	A 1.8dB NF Receiver front-end for GSM/GPRS in a 90nm Digital CMOS
	System Level Model of Communication Link for Passive UHF RFID Transponders

	Session 13
	The Statistically-Based Worst-Case Determination with Maximum Probability for RC-Delay
	Electromagnetic Field Analysis for Accurate Equivalent Inductance Modeling in SoC and SiP Designs
	The Fast and Accurate Inductance Modeling Methodology for SOC Design
	On-chip Detector for Non-Periodic High-Swing Noise Detection

	Session 14
	A Novel Gated-Oscillator CDR with Robustness to Duty Cycle Distortion
	A Digital PWCL for Multi-Phase Clock Appliations
	Accurate Prediction of Jitter Tolerance in High-Speed Serial Links
	A 1.25Gb/s Digitally-Controlled Dual-Loop Clock and Data Recovery Circuit with an Improved Effective Phase Resolution
	1.25/2.5-Gb/s Dual Bit-Rate Burst-Mode Clock Recovery Circuit Using Gated-Oscillators

	Session 15
	Built-In-Self-Calibration Scheme of Ramp Slope for Column-ADC CMOS Image Sensor
	Data Compare Multi-Channel Driving Scheme for Low Power Mobile TFT-LCD Driver IC
	Implementation of CAN Controller SoC Using ARM922T Core

	Session 16
	Efficient DFE Architecture for MIMO Communication Systems
	An Efficient Performance Analysis Model for System with AES Crypto-Processor

	Session 17
	Micromachined Variable Capacitors-Based Two-States Switchable Bandpass Filter For WLAN Applications
	Silicon MEMS probe for permittivity measurement
	On the development of an air filled half coaxial MMIC filter
	Flash Memory Meets Non-Volatile RAMs for Better Write Performance
	SMD-based internal clock generator for memory test

	Session 18
	DUAL CHANNEL AUDIO DECODING ARCHITECTURE IN DIGITAL TV SOC
	Image-Scan Architecture for Efficient FPGA/ASIC Implementation of Video-Segmentation by Region Growing
	Personal Video Recorder SoC
	Using a Retargetable Compiler to Find an Optimal Instruction-set for Fixed-point Audio Codec
	Highly Parallel Huffman Encoding by Exploiting Multiple-Matches in Content Addressable Memory

	Session 19
	A Reconfigurable CMOS LC QVCO with Band-switching LC Tank
	Wide dynamic range CMOS linear-in-dB variable gain amplifiers for WLANs
	A 10b 100 MS/s 1.4 mm2 56 mW 0.18 um CMOS A/D Converter with 3-D Fully Symmetrical Capacitors
	Analysis and Design of ?Σ Modulator for Fractional-N Frequency Synthesis
	A High Swing Range, High Bandwidth CMOS PGA and ADC for IF QPSK Receiver Using 1.8V supply

	Session 20
	New Model-based IP-Level Power Estimation for Digital Circuits
	Towards Mitigating the Complexity of System Level Design Diagrams
	Towards Analog Circuit Synthesis: Refinement of Behavioral Models by Means of Code Refactoring Methods
	Implementation of H.264 Decoder on On-Chip-Network Architecture
	An AMBA-Based IP for Transform and Quantization in H.264 Video Compression

	Session 21
	Improvement to the Leakage Power Minimization Techniques for Arithmetic Circuits
	A New Efficient Searching Techniques for Low Leakage Input Vectors
	Technique for Transition Energy-Aware Dynamic Voltage Assignment
	A Leakage-aware Bus Coding Algorithm
	EDGE: Encoding and Decoding of Generic Data for Minimizing Switched Capacitance and Transition Density for Low Power VLSI Appli

	Poster Session
	Poster Session A
	Hardware Power Estimation for Low Power Design of the Embedded System
	A Reconfigurable CSD FIR Filter Design using Dynamic Partial Reconfiguration
	An Implementation of Hardware/Software partitioning for MPEG Layer III Audio Decoder
	A Security Accelerator for PDA Systems
	A useful approach in the placement runtime and memory improvement of big cloned hierarchical top-down designs
	Novel clock tree synthesis using cloning
	An 1.25 & 2.5-Gbps Dual Mode SERDES for PON System
	An ADPLL for 3GHz CDR Transceiver
	An Implementation of all Digital FM Receiver using Phase Locked Loop
	High Power and Isolation pHEMT SPDT Switch MMIC for WLAN 802.11 a/b/g Applications
	A Current Mode 10bit 1GHz CMOS D/A Converter
	A Dual band Mixer for Multi-Stand Receiver
	A fast-locking scheme for Phase Locked Loop using adaptive capacitance in Loop Filter
	A CMOS Single-Supply Logarithmic Amplifier For Hearing Aids
	A variable gain LNA for 5 GHz band
	Efficient Non-coherent Demodulation Algorithm and Hardware Architecture for IEEE 802.15.4 MODEM
	A High-Speed Receiver Architecture for MB-OFDM UWB Communications

	Poster Session B
	IMPLEMENTATION OF H.264/AVC DECODER FOR MOBILE VIDEO APPLICATIONS
	Codeword Selection for high image quality of PDPs
	Design of Adaptive Window Based Disparity Estimation for Intermediate View Reconstruction
	Disparity Estimator using variable search window for Reduction of Computation
	Adaptive Dynamic Contrast Enhancement in LCD
	Testing High Density 3-D Memories
	Code Generation & Synthesis for SoC Virtual Platform
	SoC Implementation of Genetic Algorithm
	Low-Power Scan Testing Using Test Vector Reordering for System-on-a-Chip
	A Time-Based Indexing Scheme for Multimedia Files
	Virtual Prototyping of Portable Mobile Communication System Based on ARMulator
	A Fast RC Delay Metric Under Saturated Ramp Inputs
	PCB Plane Modeling Technique using AC-Loss Model for Circuit Simulation
	A Low Power Quaternary Interconnection with Synchronization
	Reversible Logic Design of 4:2 and 5:2 and Higher Order Compressors
	A Small Size WLAN Patch MEMS Antenna for Package Applications
	Micromachined Inductors on Silicon Substrates

	Chip Design Contest
	A Low Power CVSL Full Adder Using Low-Swing Technique
	Implementation of a Convolution Processor
	ASIC Design of PCI controller and its Applications
	ASIC Design of Blind Watermarking Chip Based on the Modified DCT Coefficient
	ASIC Design of I2C Master/Slave and its Applications
	A Bio-Motivated CMOS Vision Chip for Edge Detection with Saturating Resistive Network
	CMOS imager with 128×128 pixels for edge detection using a simplified CDS circuit
	CCMP-AES Processor for IEEE 802.11i Wireless LAN Security
	Design of 10-bit 20 Msps Pipelined A / D Converter
	Realization of Vector Control Module for AC Motor Using FPGA
	Design of a CAN Controller
	A Complementary-Gm LC VCO Employing I-MOS Varactors and Bond-wire Inductors
	A 7b 700Msps Flash ADC using 4x Interpolation method
	Verification of an Embedded Processor using Excalibur
	1.25GHz PLL with Current Matching Charge-pump for High-Speed Transmitter Design
	An 1.8V 12-bit 500MSPS Current Steering D/A Converter
	H264 Decoder Implementation
	Design and Implementation of Security camera system using Sharply Outlined Display Algorithm
	FPGA Design of XTEA Cryptographic Processor with USB Interface
	VLSI Implementation of AMBA-Based IPSEC Processor
	Design of 1.28GHz CMOS Integer-N Phase Locked Loop with Locking Status Indicator
	Flip-Flop Based 32-Bit RISC Processor Design
	Implementation of Cholesky Decomposition for Multi-User Detector
	Narrow Band 430-MHz CMOS RF Transmitter
	Design of a Floating point Unit for 3D graphics Geometry Engine
	High Frequency Divider Using Inverter and Transmission Gates
	Ku-band LNA Design in 0.18㎛ Logic CMOS Technology
	A Fully Integrated 6.5 GHz CMOS Low Noise Amplifier by using Logic Process
	An Active-RC Filter with a Fast On-Chip Tuning Circuit
	A Design of Non-coherent UWB Analog Front-End
	Interpolating-Gated-Oscillator CDR
	A 1.25Gb/s Clock and Data Recovery Circuit for Multi-channel Application
	SMART7F : A Reusable Design of 32-bit RISC Core for Embedded Applications
	A Digital 120Mb/s MIMO-OFDM Baseband Processor for High Speed Wireless LANs
	ASK modulator and Antenna driver for 13.56MHz RFID Interrogators
	The Fastest Single-Layer Robust QCA Adder
	A 6-bit(3+3) segmented Current-Steering CMOS D/A Converter for UWB
	VLSI Implementation of Multilevel Lifting based Discrete Wavelet Transform for JPEG2000
	Radix-2 to the 4th Power 1024 Point Pipeline FFT Processor Using a Data Scaling Approach
	A Crypto-Processor for Security PDA Systems
	A 32/16 Multi-Phase Delay-Locked Loop for DVD Application
	DSSS MODEM for a Medium Speed Wireless Link
	Digitally controlled phase locked loop with tracking analog-to-digital converter
	Active-RC channel selection filter tunable from 6kHz to 18MHz for software-defined radio
	A Low Power and Full ASIC System Design of MPEG-2/4 AAC Audio Decoder
	Novel noise tolerant edge detection circuit for an InSb IR detector
	A Low Power 8-bit Microcontroller for Sensor Node
	Control IC Design of Class-E Inverter for Magnetron Drive
	A 17mW, 20Mpixels/s 3-D Rendering Processor For Portable Multimedia Application
	On-chip Noise Free I/O Clock Distribution using Chip-Package Hybrid DLL and Interconnection
	Design of Offset Self-Biased PLL for Low Jitter
	A control IC for Electronic Ballast with Mixed-mode Excitation
	Analog non-uniformity correction circuit for microbolometer FPAs

	Help
	Exit

