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Abstract – In this work, our goal is to develop a fast and 
accurate power model of the ARM926EJ-S processor in 
the industrial design environment. Compared with 
existing work on processor power modeling which focuses 
on  the power states of  processor core, our model mostly 
focuses on the cache power model. It gives more than 
93% accuracy and 1600 times speedup compared with 
post-layout gate-level power estimation. We also address 
two practical issues in applying the processor power 
model to the real design environment. One is to 
incorporate the power model into an existing commercial 
instruction set simulator. The other is the re-
characterization of power model parameters to cope with 
different gate-level netlists of the processor obtained from 
different design teams and different fabrication 
technology. 
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1 Introduction 
Embedded software design is getting more and more 
attention as software (SW) complexity increases faster 
than hardware (HW) complexity [1]; thus, SW cost starts 
to dominate total chip design cost [2]. SW dominates 
power consumption as well as system performance. In 
particular, handheld mobile devices (e.g., cell phone, PDA, 
PMP, and MP3 player) require SW running on the devices 
to consume minimum power. 
Low power SW design technology covers a wide range of 
research area, e.g., instruction scheduling [10], dynamic 
voltage scaling [11], and code transformation to reduce 
off-chip memory accesses [12]. In reality, SW designers 
often apply manual code optimization for both 
performance and power. Thus, the design space of low 
power SW is huge in terms of design technology and ad-
hoc manual optimization.  
It is crucial to allow SW designers to explore the huge SW 
design space to achieve low power design. To do that, we 
need accurate and fast methods of estimating the power 
consumption of SW running on the target processor.  
In this work, our goal is to develop a fast, but accurate 
power model of the ARM926EJ-S processor in the 
industrial design environment. The industrial design 

environment is different from the academic arena in two 
aspects. First, designers often resort to commercial 
simulators and tools. Thus, the power model needs to be 
incorporated into their existing simulators or tools. Second, 
there is a need to re-characterize the power model 
parameters to deal with different gate-level netlists of the 
processor obtained from different design teams and 
different fabrication technology 1 . In order to apply the 
power model to a real design environment, we need to 
resolve these two issues. 
Compared with existing work on processor power 
modeling which focuses on  the power states of processor 
core, our model mostly focuses on the cache power model. 
It is because cache activities dominate the variation of 
processor power consumption and our initial goal of power 
estimation accuracy (90% in average power) justified a 
simple power model of the processor core. 
Experiments show that the presented power model gives 
more than 93% accuracy and 1600 times speedup 
compared with power simulation in post-layout gate-level.  
The paper is organized as follows. Section 2 summarizes 
related work. Section 3 explains the presented power 
model of the ARM926EJ-S. Section 4 addresses the issue 
of integrating the power model into a commercial 
instruction set simulator. Section 5 presents an 
environment to allow for the re-characterization of the 
power model parameters. Section 6 gives experimental 
results. Section 7 concludes the paper. 

 

2 Related Work 
Numerous studies have proposed various processor power 
modeling techniques. The first work on processor power 
modeling was reported in [6]. Their model quantified 
instruction base energy and various inter-instruction energy 
effects to enable fast software energy estimation. Wattch [4] 
and SimplePower [5] are two well-known power estimation 
tools in academia.  
A power model tailored for the Intel XScale processor was 
proposed in [7]. Their power model is based on module 

                                                           
1  For instance, 130nm technology may have different 
versions such as high speed, generic, low power and 
different libraries such as normal CMOS, MTCMOS, etc. 
Migration from 130nm to 90nm or 65nm adds another 
dimension of different types of netlists. 
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activities, where each module has its power equation 
embedded in Sim-XScale simulator. The power equations 
were constructed using transistor level schematics of 
functional units and a high-level view of transistor gate and 
drain capacitances. 
A software power estimation tool, JouleTrack, was 
presented in [9]. They proposed power characterization 
methodology that avoids explicit power characterization for 
each differentiated instruction class. 
A power model for the Philips PR1900 processor was 
proposed in [8]. Their elaborate power model is instruction-
based similar to [6] and the base power values was obtained 
using their in-house gate-level power estimation tool. 
Compared with the aforementioned studies, our work is 
unique in that we resolve practical issues encountered in 
applying power modeling to the ARM926EJ-S processor in 
the industrial design environment. More specifically, we 
resolve unique issues such as memory compiler usage (in 
Section 3), cache-oriented power modeling (in Section 3), 
integration of the power model into a commercial 
instruction set simulator (in Section 4), and re-
characterization of the power model parameters  (in Section 
5).  
 

3 ARM926EJ-S Processor Power 
Model Development 

High-level power modeling involves three major steps: 
Defining power states, characterizing power values per 
state, and annotating the simulator with the power values. 
In our work, our goal is to achieve at least 90% of power 
estimation accuracy compared with gate-level power 
estimation using the post-layout netlist.  
 

3.1 ARM926EJ-S architecture 

 

Figure 1 ARM926EJ-S architecture. 

The ARM926EJ-S processor has a five stage pipelined 
datapath and a Harvard cache architecture as shown in 
Figure 1. The caches are four-way set associative, with a 
cache line length of eight words per line.  The size of the 
caches can be from 4KB to 128KB. The ARM926EJ-S 
processor also has a fill buffer (FB) that keeps the most 

recently fetched cache line.  
 
Sequential / non-sequential cache accesses 
In the ARM926EJ-S processor, any instruction that 
modifies the program counter (such as a branch, or ‘MOV 
pc, r0’) causes a non-sequential instruction accesses on the 
next cycle.  An instruction access by ‘PC increment by 4’ 
that crosses the cache line boundary also causes a non-
sequential access.  In Figure 2 (a), a non-sequential (NS) 
access causes all four cache tag memories and data 
memories to be accessed along with the fill buffer. 
Whereas a sequential access (SEQ) causes only the data 
memory where the data is located is accessed as in Figure 
2 (b).  In Figure 2 (c), if the data is accessed from the fill 
buffer, there in no access to the cache.  
For data caches, load multiple (LDM) and store multiple 
(STM) instructions support sequential accesses. LDR and 
STR instructions incur non-sequential accesses. 
 

3.2 ARM926EJ-S power states 

The ARM926EJ-S processor is mainly composed of the 
processor core (mostly consisting of logic) and memory 
cells (i.e. instruction and data caches, fill buffers, MMU, 
etc.) as shown in Figure 1. We separate the processor 
power model into two parts: Processor core model and 
cache model. This separation comes from two observations. 
One is that caches can be configured differently (in terms 
of size, associativity, etc.) for various applications. Thus, 
one single model will not give an accurate estimation. The 
other observation is that the power consumption of caches 
gives a large variation. In the ARM926EJ-S processor, the 
cache power consumption ranges from 3% up to 60% of 
total power. Therefore, we decide to model the core logic 
block and cache memory separately.  

3.2.1 Processor core: Two simple power states 
We observe that the core logic can be in one of the two 
states: Busy state and idle state (stalled by interlocks). 
There are numerous studies on processor power modeling, 
where more complex instruction level power states are 
identified [6,7,8]. However, in our work, we find that the 
two-state core power model gives more than 95% of the 
core power estimation accuracy for all of our benchmarks. 
On the other hand, one state model performs very poorly 
with its accuracy level of less than 70% for some 
benchmarks.  Thus, we adopt the two-state power model 
for the processor core. 

3.2.2 Activity-based coarse-grain cache power 
model 

Most of the previous work on cache power modeling has 
exploited circuit-level information such as bit line and 
word line capacitive loads to generate flexible cache power 
models [4, 5, 7]. In industry, cache memories use memory 
compiler-generated SRAMs, where power values for each 
module are also provided for each type of read and write 
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access.  Thus, our cache power is modeled as a sum of 
power values for all accessed SRAM modules. For SRAM 
modules not accessed during the cycle, their static power 
values are added.   
 

 

Figure 2 ARM926EJ-S cache activity patterns. 

Power modeling for sequential/non-sequential accesses 
The ARM926EJ-S cache access behavior can be 
categorized into three different types as shown in Figure 2. 
In power perspective, a non-sequential access consumes 
more than four times of power than a sequential access, 
since the cache power is the sum of dynamic power of all 
activated modules (tag memories and data memories) and 
static power of inactive modules.  In Figure 3, the CSN 
(Chip Select Negative) signals for four cache ways are 
shown with the total power consumption graph measured 
using our in-house gate-level power simulator for the short 
code segment at top of the figure. When the four CSN 
signals are active (four ways are accessed altogether), the 
access is non-sequential, whereas if only one of the four 
ways is accessed, the access is sequential. The figure 
dictates that in the ARM926EJ-S caches, non-sequential 
accesses and sequential accesses should be differentiated 
for accurate power estimation.  
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Figure 3 Comparison of power consumption between 
sequential and non-sequential accesses. 

Table 1 lists our identified data cache states and their 
corresponding module activities and power equations. In 
the table, Tr (Tw) and Dr (Dw) represent module power 
numbers for Tag read (Tag write) and Data read (Data 
write), respectively, obtained from our in-house memory 
compiler. The states are identical for the instruction cache 
except that there is no cache write hit or miss states. In this 
work, we ignore the power consumed by fill buffers.  
 
Power modeling for fill buffer accesses 
Instructions and data are accessed from the fill buffer until 
it is evicted to the cache in two cycles (as shown 1st write-
back and 2nd write-back in Table 1) by the following cache 
line fetched in from the bus. Instruction fill buffer (I-FB) 
hit counts accounts for approximately 10% of the 
instruction cache hit counts in our dhrystone benchmark. If 
an instruction fill buffer hit is encountered and the PC 
increments by 4, then it is I-FB sequential read, where 
negligible amount of power is consumed by the fill buffer. 
Therefore, it should be distinguished if the data is read 
from the cache or fill buffer to estimate power accurately. 
 
Power modeling for data write accesses 
Data cache write event takes at least three cycles. Four tags 
are first matched to find if it is a hit or a miss. If it is a hit, 
the data is written via a write buffer. We did not consider 
the power consumption of the write buffer since it is 
considered to be negligible. If the access is a miss, it is 
written externally. 
 

Table 1 Activity-based cache power model. 

Cache states Module activity Power  
Equation 

sequential (cache) read 1 data read Dr 
non-sequential  (cache) 
read / read miss 

4 tag reads and 
4 data reads 

Tr*4 + 
Dr*4 

Data cache write hit 4 tag  reads, 1 
tag write and 1 
data write 

Tr*4 
+Tw+Dw 

Data cache write miss 4 tag reads Tr*4 
FB -> cache write (1st  
write-back) 

1 tag write and 4 
data writes 

Tw+Dw*4 

FB -> cache write (2nd 
write-back) 

4 data writes Dw*4 

sequential FB read - - 
 
4 Inferring Cache Power States 
The module activity information shown in Table 1 is not 
available in our instruction set simulator. The simulator 
reports only cache miss, cache hit, and fill buffer hit events 
without the information on sequential and non-sequential 
accesses. To obtain the activity information, distinctive 
cache power states need to be inferred from the available 
state information of the simulator at run-time. 
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Figure 4 Inference flow diagram of sequential / non-
sequential / FB accesses for the instruction cache. 

To infer the required cache activity information, we 
implement the steps in the flow diagram depicted in Figure 
4 in the instruction set simulator for instruction accesses (a 
similar flow diagram for data caches is employed in our 
work). While observing the PC update history, we use the 
statistics such as cache hit or miss, and fill buffer hit or 
miss, provided by the instruction set simulator to infer the 
instruction cache power state. For instance, if a cache read 
hit is reported while the PC is incremented by 4 inside a 
cache line, it is in sequential read state.  A fill buffer hit 
event reported by the simulator can be in one of the two 
power states as shown in Figure 2 (a) (fill buffer access in 
non-sequential access) and Figure 2 (c) (fill buffer access 
in sequential access). Similar to the cache hit event, if the 
fill buffer hit event is reported while the PC is incremented 
by 4 inside a cache line, it is in sequential fill buffer read 
state.  
 

5 Power Re-characterization Flow 
Power consumption is a complex function of many 
parameters. Depending on the quality of implementation, 
the same RTL can result in very different power values in 
the gate-level netlist. For example, two of our sample 
designs of the ARM926EJ-S show as much as twice power 
difference at the same frequency level, even though they 
are implemented with the same technology library. This 
implies that ‘characterize once’ approach might not hold 
true in real applications.  
In general, power characterization in gate level proceeds as 
follows: (1) Obtain the signal toggle information from gate 
level simulation, (2) estimate the gate-level power from the 
toggle information using power libraries, and (3) calculate 
per-state power values using the estimated power 
information. If the power characterization is performed 

manually for each different gate-level netlist, it will be 
long, tedious, and error-prone task.  
To reduce the characterization efforts, we set up an 
automated characterization flow as shown in Figure 5, 
where designers can characterize power values repeatedly 
without investing much effort. The characterized power 
values are simply read by our simulator annotated with the 
power model explained in Section 4 to produce software 
power profiles.  Note that the power model itself does not 
need any modification. We find that the power model itself 
is valid for different implementations of the same RTL.  
Figure 5 shows our power characterization flow.  We first 
build a gate-level and RTL co-simulation template, where 
an RTL testbench with a simple bus and memory module 
drives the simulation with the ARM926EJ-S gate level 
netlist of interest to generate the cycle-by-cycle signal 
toggle information as well as signal traces to infer the 
power states, using dhrystone benchmark. The toggle 
information is then fed into our in-house gate level power 
estimation tool to generate cycle-by-cycle power values. 
The per-state power value is obtained by averaging the 
estimated cycle-by-cycle power values. All the 
aforementioned steps are performed automatically without 
any user intervention. The obtained per-state power value 
is finally annotated into our power simulator.  We use the 
characterization flow to obtain the core power states in our 
power model. Note that the cache power model is activity-
based and its SRAM module power value is provided by 
our memory compiler as explained in Section 3. 
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Figure 5 Our power characterization flow. 

 

6 Experiments 
Table 2 lists the characteristics of five benchmarks used in 
our experiments. The Figure 6 shows 93%~98% of 
average power estimation accuracy for the five 
benchmarks. Figure 7 shows cycle-by-cycle estimation 
result for a short code segment. It can be seen that the 
estimated power values closely track the power values 
measured in gate level. The cycle-by-cycle error is 17% on 
average. Regarding the power estimation speed of our 
simulator, it performs approximately 1600 times faster 
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than gate-level estimation. 

Table 2 Benchmarks. 

Benchmark Code Size Simulation 
Cycle Counts 

dhrystone  49KB 12068 
cavity_detection 39KB 106138 
adpcm encoder 36KB 101358 
fft 96KB 321537 
h264 enc (me intpel only) 714KB 1896639 
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Figure 7 Cycle-by-cycle estimation accuracy. 

 

7 Conclusions 
In this paper, we proposed a fast and accurate power 
model for the ARM926EJ-S processor. The processor core 
is modeled in two power states, namely, busy state and idle 
state. The cache model is a coarse-grained activity model. 
We model power distinctive cache states based on its 
access behavior.  Each power state is inferred by the 
instruction simulator at run-time using the cache events 
provided by the simulator. 
We also presented the power characterization flow with 
which each design team can adapt the model to its own 
implementation of the processor without much effort. 
Our experiments report more than 93% of average power 
estimation accuracy and closely track the cycle-by-cycle 
power trend. 

Our future work includes applying the technique presented 
in this paper to other processors such as DSPs and the 
ARM1176 processor.  
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